William Joe Sagues

Bio
Dr. Sagues is the Principal Investigator of the Biocarbon Utilization & Sequestration (BUS) Lab in the Biological & Agricultural Engineering Department at NC State University. He has experience in research, development, and demonstration of innovative bioprocessing technologies at corporations, startup companies, universities, and national labs. The BUS Lab takes an integrated approach to innovate technologies that utilize and sequester biogenic carbon, with a specific interest in waste materials generated along food production supply chains. The aim of his work is to leverage the bioeconomy for carbon drawdown. He is bridging fundamental advances in synthetic biology and chemical catalysis with bioprocess engineering to innovate carbon-negative bioproducts that range from feed, chemicals, fuels, and materials. When developing a new technology, the BUS Lab takes into account the entire technology-to-market pathway, starting with fundamental research and ending with commercialization. Such a comprehensive approach increases the odds of commercial success by eliminating developmental hurdles and pitfalls at an early stage.
Education
PhD Forest Biomaterials NC State 2020
MS Chemical Engineering University of Florida 2017
MS Agricultural & Biological Engineering University of Florida 2017
BS Agricultural & Biological Engineering University of Florida 2012
Publications
- A techno-economic assessment of carbon dioxide removal pathways via biochemical conversion of lignocellulose to biofuels and bioplastics , RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2025)
- Impacts of Municipal and Industrial Organic Waste Components on the Kinetics and Potentials of Biomethane Production via Anaerobic Digestion , WASTE AND BIOMASS VALORIZATION (2025)
- Kinetic Modeling of Thermophilic Anaerobic Digestion of Lemnaceae for Biogas Production , BIOENERGY RESEARCH (2025)
- Sustainable Graphite and Jet Fuel from Biorefinery Residue , CHEMSUSCHEM (2025)
- Biomass composting with gaseous carbon dioxide capture , RSC SUSTAINABILITY (2024)
- Catalytic graphitization of pyrolysis oil for anode application in lithium-ion batteries , GREEN CHEMISTRY (2024)
- Elucidating the impacts of municipal and industrial organic waste components on the kinetics and potentials of biomethane production via anaerobic digestion , (2024)
- Evaluating cotton apparel with dynamic life cycle assessment: The climate benefits of temporary biogenic carbon storage , BioResources (2024)
- Kinetic assessment of pulp mill-derived lime mud calcination in high CO2 atmosphere , Fuel (2024)
- Phenolic Resin Derived Hard Carbon Anode for Sodium-Ion Batteries: A Review , ACS ENERGY LETTERS (2024)
Grants
This fundamental research is motivated by three major global challenges that directly involve the transformation of gas molecules: carbon dioxide (CO2) capture for greenhouse gas mitigation, CO2 conversion to fuels and chemicals, and nitrogen (N2) gas conversion to biologically available ammonia to meet growing fertilizer demand. The research focuses on creating and investigating multi-functional interfaces that durably immobilize enzymes near their gaseous substrates while simultaneously delivering essential chemical and electrical reducing equivalents and removing reaction products to achieve maximum catalytic rates. Biocatalytic systems to be explored are: conversion of CO2 to bicarbonate catalyzed by carbonic anhydrase, reduction of CO2 to formate catalyzed by formate dehydrogenase, and reduction of N2 to ammonia catalyzed by nitrogenase. We envision that minimization of reaction barriers near immobilized biocatalyst interfaces involving gas molecule conversions will lead to transformative innovations that help overcome global sustainability challenges.
We propose an integrated technology of low capital intensity that will capture, utilize,and sequester CO2 in wood pulping processes. CO2 will be utilized by converting two waste streams to mineral carbonate fertilizer. The carbon in the mineral carbonates is derived from CO2 generated in recovery boilers and lime kilns. Excess CO2 that is not utilized as fertilizer will be pumped deep underground into suitable geological reservoirs for permanent sequestration. Retrofitting lime kilns to oxy-fuel will enable low-cost generation of high purity CO2. If fully implemented at every large chemical pulp mill in the United States, approximately 14 million metric tons of CO2 will be captured, utilized, and sequestered per year.
We will improve and validate the critical unit operations needed for producing high-value carbon materials (graphite and hard carbon) used for lithium ion and sodium ion batteries from a faction of the biocrude produced by biomass fast pyrolysis. This work will bring together two innovations, 1) production of high-value carbon materials from the biocrude heavy residues fraction, which are often difficult to convert into biofuels, and 2) process innovations that should lower the costs for producing these high-value carbons. In order to produce high-value carbons, the biocrude residues are sequentially heated to remove volatiles and oxygen, polymerize the biomass carbons into graphene sheets, and in a second step form either highly crystalline graphite or disordered hard carbon. The graphite can be used in as drop-in anode material in existing commercial lithium ion battery (LIB) applications such as portable electronics and electric vehicles (EVs), while the hard carbon can be used in emerging and advancing battery applications, such as sodium ion battery (SIB) for grid electrochemical energy storage and LIB for hybrid batteries in EV with high capacity and good rate capability. The team has demonstrated that both graphite and hard carbon can be produced from pyrolysis biocrudes at laboratory scale and has measured their electrochemical performance in batteries. This work will optimize the range of operating parameters, with a focus on the complex interactions between the chemical changes and the heat and mass transfer characteristics of the reactor and increase the production scale to obtain mass and energy balances that are relevant for modeling commercial potential. The performance of the carbon materials will be evaluated to define their values in commercial systems. Both techno-economics (TEA) and life cycle analysis (LCA) will be performed to understand the economic and environmental impact of the proposed technology. Preliminary revenue analysis suggests diverting 15-25% of the biocrude, essentially all of the heavy and less valuable fraction, into high-value carbons like graphite or hard carbon can significantly improve the profits of a biorefinery and lower the cost of making biofuels. The goal of this project is to optimize and scale-up the process for producing graphite and hard carbon that meet the requirement for LIB and SIB, respectively. Performance specification will be measured, including electrochemical performance under varying conditions (e.g., operating voltage range, current density, and c-rate) using coin-type and pouch cells. We will use a suite of advanced analytical tools to develop a more detailed understanding of 1) how the chemical composition of biocrude and the carbonization process impact the macromolecular ordering of the final products and 2) how the changes in carbon structure influence on the ion storage behavior (e.g., (de)insertion and adsorption/desorption) and subsequent electrochemical performance. In addition to the performance of the carbon materials, we will determine yields in order to close the mass and energy balances of the process. This data will be used to conduct rigorous TEA and LCA models to demonstrate the target FOA metrics such as $3.00/GGE fuel selling price and 60% reduction in emission. Successful completion of the scale up of bio-based graphite and hard carbon production will enable commercialization of these processes and will have an important impact on several sustainable technologies, 1) the low cost biocrude, the bio-based graphite will reduce the cost for LIB that can be used in EVs, 2) the low cost of hard carbon production will enable SIB for energy grid storage and LIB for advanced batteries for EVs, supporting continued growth of PV and wind electricity generation, and 3) commercial production of graphite and hard carbon as biorefinery co-products will improve the overall economics of producing biofuels.
We propose to concurrently investigate two distinct methane pyrolysis approaches to co-produce hydrogen and easily separable value-added carbon products: (a) tailored heterogeneous catalysts for base-growth carbon nanotubes with selective base combustion for nanotube harvesting; and (b) molten phase catalysts that enables phase segregation of the carbon product. It is envisioned that approach a will be implemented in a circulating fluidized bed (CFB) system (related processes include CFB combustor or fluid catalytic cracker) and approach b will be implemented in a bubble column reactor (related processes include molten salt systems in nuclear power plants). These complementary approaches can facilitate low cost hydrogen production, facile catalyst-carbon separation, and different forms of value-added carbon products.
An ethanologenic, WT, non-GMO strain of yeast from Rayonier will be assessed for viability. If viable, cells will be propagated and cultured for further fermentation work. A multitude of culture tubes will be placed in a -80C freezer for preservation. A liquid sample from an existing pulp mill, termed ����������������liquor���������������, will be characterized and assessed for biotoxicity. The soluble sugars in the liquor will be fermented to ethanol using RYAM������������������s yeast strain. If needed, commercially available yeast, such as Ethanol Red, will also be used per RYAM������������������s instruction. A series of process variables, as prescribed by RYAM, will be assessed to identify optimal parameters for ethanol productivity and yield.
The overall goal for the project is to fully explore the utilization of waste cotton biomass for bioenergy and carbon removal across the entire cotton and apparel value chain. The project will include a characterization of the amounts of materials available at all stages of the value chain and techno-economic and environmental life cycle analyses of all identified combinations of cotton material-final applications. We will also prioritize these combinations in terms of potential for commercial success/environmental benefit and define areas of further research that will promote these technologies.
We propose an innovative bioprocess that will produce high value cellulose nanocrystals (CNC) and butanol fuel from sustainable biomass feedstocks. Specifically, we will assess two biomass feedstocks: 1) poplar-derived market pulp and 2) CRISPR edited whole poplar biomass, as shown in Figure 1. Tailored hemicellulase and cellulase enzymes will be provided by Novozymes to selectively hydrolyze the hemicellulose and amorphous cellulose to generate free sugars and cellulose nanocrystals. The free sugars, both 5- and 6-carbon, will be fermented to butanol fuel via Clostridium saccharoperbutylacetonicum. After fermentation, butanol will serve two beneficial purposes for downstream separation operations: 1) butanol will act as a dispersant inhibiting hydrogen bonding and reducing nanocellulose agglomeration1 and 2) butanol will partially solubilize lignin thereby enhancing liquid/solid separation.2,3
The recent LLNL report Getting to Neutral: Options for Negative Emissions in California was the first economy-wide evaluation of how carbon removal could be used to complete the job of getting to true net zero and meeting our climate goals. It is now appropriate to expand that analysis to the entire nation, producing a technical evaluation of both the options and costs for removing carbon dioxide from the air. This report will bring together experts around the country to evaluate opportunities in natural solutions, biomass solutions with permanent storage, and direct air capture. Key partners have been assembled from the national labs, the Texas Bureau of Economic Geology, and universities. These partners will help ensure accuracy and balance in the report. The feasibility and costs will be evaluated on a county level for the entire nation. This will identify how much of each approach can be used in specific areas, which we anticipate will vary dramatically around the nation. Cumulative costs and volumes will be provided by region for the 2050 time frame. The report will evaluate direct removals from the air. This project will evaluate the national opportunities to remove CO2 from the air by evaluating feedstocks, technologies, and limits. This will enable EERE and BETO to coordinate with FECM and ARPA-e to research and develop the most available and cost-effective means to achieve negative emissions.
Utilization of various organic waste materials for low-carbon energy production has made significant contributions to environmental protection and sustainable development. Novozymes and North Carolina State University (NCSU) have a common interest in promoting and optimizing bioenergy production from organic waste materials with enzymes. Specifically, we will work collaboratively to develop and optimize an enzyme enhanced anaerobic digestion (2E-AD) bioprocess from source separated organics (SSO) and municipal solid waste (MSW) in this proposed project.
If funded, this early-stage research will establish the groundwork to ultimately develop an innovative bioprocess that decouples land- and ocean-use from protein feed production by converting air-derived CO2 and N2 into an alternative source of protein to supplement, or possibly replace, certain animal and fish feed products that are currently made in an unsustainable fashion. The potential for economic impact is profound given that animal agriculture and associated industries generate revenues of ~$1.25 trillion each year in the US.21 Electrification of protein via A+B systems has exciting potential to address critical issues in agriculture and aquaculture, and, if successful, this particular project will help realize this potential.